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The correction to the velocity of thermal slip of a rarefied gas along the surface of a sphere has been calcu-
lated; the correction allows for the presence of the second-order mixed derivative of temperature. For this
purpose we constructed an exact solution of the Boltzmann inhomogeneous kinetic equation with the collision
operator in the form of an ellipsoidal statistical model. The results obtained confirm the existence of negative
(in the direction of the temperature gradient) thermophoresis of highly heat-conducting aerosol particles at
small values of the Knudsen number. Comparison with the literature data has been made.

Exact analytical solutions of an ellipsoidal statistical (ES) model of the Boltzmann kinetic equation in prob-
lems of thermal and isothermal slips of rarefied gas along the surfaces of a sphere and a right circular cylinder are
obtained in [1–3]. In what follows, using the ES model of the Boltzmann kinetic equation we solve the problem of
calculation of the correction to the velocity of thermal slip of a rarefied gas along a spherical surface; the correction
allows for the presence of the mixed second-order derivative of temperature. Allowance for this effect made it possible
to predict the existence of negative (in the direction of the temperature gradient) thermophoresis of highly heat-con-
ducting aerosol particles.

Problem Formulation. Derivation of Basic Equations. We consider a rarefied gas which fills the space
around a spherical aerosol particle of radius R. The state of the gas is described by the distribution function f(r, C),
which is the solution of the linearized Boltzmann kinetic equation with the collision operator in the form of the ES
model [4, 5]. In the spherical system of coordinates this equation is written as
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Let the temperature gradient which is normal to the particle surface be set in the gas. We assume that the
gradient is not constant but slowly changes along the particle surface. Thus, in the problem the quantities ∂T ⁄ ∂r and
∂2T ⁄ ∂r∂θ differ from zero. The first of these quantities leads to a temperature jump on the particle surface and the
other to additional slip of the gas along its surface, which is caused by the nonuniformity of the temperature distribu-
tion in the Knudsen layer. We assume these quantities to be small, i.e., we take that
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We linearize the distribution function of gas particles over the coordinates and velocities relative to the locally
equilibrium distribution function written in the Chapman–Enskog approximation [6]:

f = f
 0

 [1 + Y (r, θ, C)] .

As the boundary condition on the particle surface we take the model of diffuse reflection.
We expand Y(r, θ, C) into a series in terms of a small parameter R−1:

Y (r, θ, C) = Y
(1)

 (r, θ, C) + R
−1

Y
(2)

 (r, θ, C) + ...  .

Substituting this series into the initial equation and equating the terms at R−1, we come to the equation for
the determination of Y(2)(r, θ, C)
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It follows from the problem of the temperature jump at the boundary of the solid surface [7] that

Y
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We find the solution of Eq. (1) in the form

Y
(2)
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where Cθ in combination with bk(Cθ, Cϕ) forms a complete system of orthogonal (in the meaning of the scalar prod-
uct) polynomials.

We substitute (4) into (1) and (2). Remultiplying the obtained relations by Cθ exp (−Cθ
2 − Cϕ

2) and integrating
with respect to Cθ and Cϕ from −∞ to +∞, with account for (3) we come to the equation and the boundary conditions
for determining the function ϕ(r, θ, Cr):

Lϕ (x, µ) = − k [Y1 (x, µ) + Y2 (x, µ)] , (5)

ϕ (0, µ) = − 2U0 ,   µ > 0 , (6)

ϕ (∞, µ) = 0 . (7)
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For brevity, the argument θ is omitted in the functions entering into (5), and the integro-differential operator
corresponding to the ES model of the Boltzmann kinetic equation is symbolized by Lϕ(x, µ), i.e.,
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Then, with account for the adopted designation we rewrite (5) in the form

Lϕ (x, µ) = − ∫ 
0

∞
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 dη − exp (− x ⁄ µ) b (µ) Θ+ (µ) . (8)

Thus, the problem of calculation of the correction to the velocity of thermal slip of a rarefied gas along a
spherical surface, which allows for the presence of the second-order mixed derivative of temperature, is reduced to so-
lution of Eq. (8) with boundary conditions (6) and (7).

Problem Solution. We find a general solution of the inhomogeneous integro-differential equation (8) in the
form of the sum of the general solution of the corresponding homogeneous equation and a partial solution of the in-
homogeneous one.

Direct substitution ensures that
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and A0 and n(η) are the unknown parameters to be determined.
We find a partial solution of the equation
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in the form
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Substituting (10) to (9), we come to the characteristic equation
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whose solution in the space of generalized functions has the form
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where g1(η) is found by substitution of (12) into the normalization condition (11):
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The partial solution of the equation
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With account for the results obtained we write the general solution of Eq. (8) in the form
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The unknown parameters A0 and n(η) entering into (13) are determined from the boundary conditions (6), (7) by the
boundary-value problem theory.

Determination of the Parameters Entering into the Solution. The solution constructed at A0 = 0 satisfies
the boundary condition (7) at infinity. With account for the boundary condition (6) on the wall, we reduce (13) to a
singular integral equation with the Cauchy kernel
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which is analytic in the complex plane with a cut along the real positive semiaxis. With allowance for the form of the
boundary values of the functions N(µ), M(µ), and λ(µ) from above and below on the cut (0, +∞), we reduce Eq. (14)
to the Riemann inhomogeneous boundary-value problem on the real positive semiaxes:
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We consider the corresponding homogeneous boundary-value problem
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As the zero-bounded solution of the problem we take the function
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Using the considered homogeneous problem, we reduce (16) to the problem of determination of the analytical
function by the prescribed jump
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whose solution with account for the behavior of all the functions entering into it is written in the form
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The function N(z) determined by equality (15) disappears at an infinitely remote point. We require that solu-
tion (17) also possess this property. Expanding (17) into a series in the vicinity of the infinitely remote point, we find
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Expression (18) determined the sought-for correction to the velocity of thermal slip, which allows for the
presence of the second-order mixed derivative of temperature. The numerical analysis presented gives the following re-
sult:

U0 = 0.4150885k . (19)

Passing in (19) to dimensional quantities and writing in the form adopted in the kinetic theory of rarefied
gases [8]

Uθ s = KT βR Kn νk ,

we find βR = 1.834375. Allowing for the fact that for highly heat-conducting aerosol particles at small values of the
Knudsen number, the rate of thermophoresis is determined by the expression [9]

UT = τν Kn ∇  ln T ,   τ = − 2KT (CT + βR − βBa) ,

where KT = 1.14995, CT = 2.204939, and βBa = 4.297, we find τ = 0.5926. We note that the value of the coefficient
βR provides theoretical confirmation of the existence of negative (in the direction of the temperature gradient) thermo-
phoresis. Application of the method used in the present paper to the BGK model of the Boltzmann kinetic equation
with constant and variable collision frequencies gives values of the coefficient βR equal to 2.376842 and 1.1437, re-
spectively.

Thus, in the paper, we calculated the correction to the velocity of thermal slip of a rarefied gas along the sur-
face of a spherical aerosol particle; the correction allows for the presence of the second-order mixed derivative of tem-
perature. It is shown that allowance for the considered effect in the boundary conditions provides theoretical
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confirmation of the existence of negative (in the direction of the temperature gradient) thermophoresis for highly heat-
conducting particles at small values of the Knudsen number. The results obtained can be used for calculating the ther-
mophoresis rate of aerosol particles in temperature-nonuniform rarefied gases. The analysis conducted allows one to
draw a conclusion on the substantial dependence of the value of the coefficient βR on the choice of the model of the
collision integral.

NOTATION

R, dimensionless sphere radius; 3Rλ ⁄ √π , dimensional sphere radius, m; λ, mean free path of gas particles, m;
Kn = √π/3R, Knudsen number; C, dimensionless velocity of gas molecules; Cβ−1 ⁄ 2, dimensional velocity of gas mole-
cules, m/sec; β = m/2kBT, Boltzmann constant; m, mass of a molecule, kg; Uθ s, value of the tangent to the surface
of the component of the dimensionless mass velocity on the particle surface; T, temperature, K; Ts, particle surface
temperature, K; KT, coefficient of thermal slip of rarefied gas along a plane surface; k, second-order mixed derivative
of temperature related to the temperature of the particle surface; f(r, C), distribution function of gas molecules over
the coordinates and velocities; f0(r, C) = (β ⁄ π)3

 ⁄ 2 exp (−C2), absolute Maxwellian; f0(r, C), locally equilibrium distri-
bution function of gas molecules in the gas volume written in Chapman–Enskog approximation; C, modulus of the di-
mensionless velocity of gas molecules; Cr, Cθ, Cϕ, components of the dimensionless intrinsic velocity of molecules in
the spherical coordinate system; r, modulus of the dimensionless radius-vector; 3rλ ⁄ √π, dimensional radius-vector, m;
θ, ϕ, angular coordinates of the spherical coordinate system; ν, kinematic viscosity of gas, m2/sec; x, dimensionless
distance reckoned from the normal to the sphere surface; Y(r, θ, C), function allowing for deviation of the distribution
function in the Knudsen layer from the distribution function in the gas volume; Y1(x, µ) and Y2(x, µ), distribution
functions obtained in the problem of a temperature jump; µ, radial component of the dimensionless velocity of gas
molecules; η, spectral parameter of expansion; Φ(η, µ), eigenvectors of the continuous spectrum of the problem of iso-
thermal slip of a rarefied gas along a plane surface (Kramers problem); F(η, µ), eigenvectors of the continuous spec-
trum of the problem of a temperature jump; λ(z), Cercignani dispersion function; a, auxiliary function; L, linearized
operator; τ, coefficient; Px−1, distribution in the meaning of the main value in calculation of the integral of x−1; δ(x),
Dirac delta function; Θ+(µ), Heaviside step function (Θ+(µ) = 0 when µ < 0 and Θ+(µ) = 1 when µ ≥ 0); i, imaginary
unit; X(z), canonical function from the Kramers problem; CT, coefficient of the temperature jump of rarefied gas at the
boundary of the plane surface; βBa, coefficient of Barnett slip; βR, coefficient allowing for the effect of nonuniformity
of the temperature distribution in the Knudsen layer on the velocity of slip. Indices: s, sphere surface; r, θ, ϕ, projec-
tions on the axes of the spherical coordinate system; B, Boltzmann; Ba, Barnett; T, temperature; 0, zero; ′, differentia-
tion; (1), (2), ordinal number of the corresponding coefficients in expansion of quantities into a series in terms of
powers of the inverse radius; %, denotes boundary values of the functions of the complex variable on the upper and
lower edges of the cut; i, j, projections of velocity on the coordinate axes of the spherical coordinate system; t, trans-
position.
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